A Basic Branch and Bound Solver in Python using Cvxpy

Branch and bound is a useful problem solving technique. The idea is, if you have a minimization problem you want to solve, maybe there is a way to relax the constraints to an easier problem. If so, the solution of the easier problem is a lower bound on the possible solution of the hard problem. If the solution of the easier problem just so happens to also obey the more constrained hard problem, then it must also be the solution to the hard problem. You can also use the lower bound coming from a relaxed problem to prune your search tree for the hard problem. If even the relaxed problem doesn’t beat the current best found, don’t bother going down that branch.

A standard place this paradigm occurs is in mixed integer programming. The relaxation of a binary constraint (either 0 or 1) can be all the values in between (any number between 0 and 1). If this relaxed problem can be expressed in a form amenable to a solver like a linear programming solver, you can use that to power the branch and bound search, also using returned solutions for possible heuristics.

I built a basic version of this that uses cvxpy as the relaxed problem solver. Cvxpy already has much much faster mixed integer solvers baked in (which is useful to make sure mine is returning correct results), but it was an interesting exercise. The real reason I’m toying around is I kind of want the ability to add custom branching heuristics or inspect and maintain the branch and bound search tree, which you’d need to get into the more complicated guts of the solvers bound to cvxpy to get at. Julia might be a better choice.

A somewhat similar (and better) project is https://github.com/oxfordcontrol/miosqp which doesn’t use cvxpy explicitly, but does have the branch and bound control in the python layer of the solver. There are also other projects that can use fairly arbitrary solvers like Bonmin

As a toy problem I’m using a knapsack problem where we have objects of different sizes and different values. We want to maximize the value while keeping the total size under the capacity of the bag. This can be phrased linearly like so: \max v \cdot x s.t. \sum_i s_i x_i<= capacity , x \in {0,1}. The basic heuristic I’m using is to branch on variables that are either 0 or 1 in even the relaxed solution. The alternative branch hopefully gets pruned fast.

This is at least solving the problem fairly quickly. It needs better heuristics and to be sped up, which is possible in lots of ways. I was not trying to avoid all performance optimizations. It takes maybe 5 seconds, whereas the cvxpy solver is almost instantaneous.

Mixed Integer Programming & Quantization Error

I though of another fun use case of mixed integer programming the other day. The quantization part of a digital to analog converter is difficult to analyze by the techniques taught in a standard signals course (linear analysis, spectral techniques, convolution that sort of thing). The way it is usually done is via assuming the quantization error is a kind of randomized additive noise.

Mixed Integer programming does have the ability to directly encode some questions about this quantization though. We can directly encode the integer rounding relations by putting the constraint that the quantized signal is exactly +-1/2 a quantization interval away from the original signal. Then we can run further analysis on the signals and compare them. For example, I wrote down a quick cosine transform. Then I ask for the worst case signal that leads to the most error on the quantized transform versus the transform of the unquantized signal. My measure of worst case performance was the sum of the difference of the two transforms. I chose this because it is tractable as a mixed integer linear program. Not all reasonable metrics one might want will be easily encodable in a mixed integer framework it seems. Some of them are maximizing over a convex function, which is naughty. (for example trying to maximize the L2 error \sum|x-y|^2 )

In a variant of this, it is also possible to directly encode the digital signal process in terms of logic gate construction and compare that to the intended analog transform, although this will be a great deal more computational expensive.

This is interesting as a relatively straightforward technique for the analysis of quantization errors.

This also might be an interesting place to use the techniques of Vanderbei https://vanderbei.princeton.edu/tex/ffOpt/ffOptMPCrev4.pdf . He does a neato trick where he partially embeds the FFT algorithm into an optimization problem by adding auxiliary variables. Despite the expense of adding these variables, it greatly increases the sparsity of the constraint matrices, which will probably be a win. I wonder if one might do something similar with a Fast Multipole Method , Barnes Hut, or Wavelet transform? Seems likely. Would be neat, although I’m not sure what for. I was thinking of simulating the coulomb gas. That seems like a natural choice. Oooh. I should do that.

Solving the XY Model using Mixed Integer Optimization in Python

There are many problems in physics that take the form of minimizing the energy. Often this energy is taken to be quadratic in the field. The canonical example is electrostatics. The derivative of the potential \phi gives the electric field E. The energy is given as \int (|\nabla \phi|^2 + \phi \rho) d^3 x . We can encode a finite difference version of this (with boundary conditions!) directly into a convex optimization modelling language like so.

The resulting logarithm potential

It is noted rarely in physics, but often in the convex optimization world that the barrier between easy and hard problems is not linear vs. nonlinear, it is actually more like convex vs. nonconvex. Convex problems are those that are bowl shaped, on round domains. When your problem is convex, you can’t get caught in valleys or on corners, hence greedy local methods like gradient descent and smarter methods work to find the global minimum. When you differentiate the energy above, it results in the linear Laplace equations \nabla^2 \phi = \rho. However, from the perspective of solvability, there is not much difference if we replace the quadratic energy with a convex alternative.

Materials do actually have non-linear permittivity and permeability, this may be useful in modelling that. It is also possible to consider the convex relaxation of truly hard nonlinear problems and hope you get the echoes of the phenomenology that occurs there.

Another approach is to go mixed integer. Mixed Integer programming allows you to force that some variables take on integer values. There is then a natural relaxation problem where you forget the integer variables have to be integers. Mixed integer programming combines a discrete flavor with the continuous flavor of convex programming. I’ve previously shown how you can use mixed integer programming to find the lowest energy states of the Ising model but today let’s see how to use it for a problem of a more continuous flavor.

As I’ve described previously, in the context of robotics, the non-convex constraint that variables lie on the surface of a circle can be approximated using mixed integer programming. We can mix this fairly trivially with the above to make a global solver for the minimum energy state of the XY model. The XY model is a 2d field theory where the value of the field is constrained to lie on a circle. It is a model of a number of physical systems, such as superconductivity, and is the playground for a number of interesting phenomenon, like the Kosterlitz-Thouless phase transition. Our encoding is very similar to the above except we make two copies of the field phi and we then force them to lie on a circle. I’m trying to factor out the circle thing into my library cvxpy-helpers, which is definitely a work in progress.

Now, this isn’t really an unmitigated success as is. I switched to an absolute value potential because GLPK_MI needs it to be linear. ECOS_BB works with a quadratic potential, but it was not doing a great job. The commercial solvers (Gurobi, CPlex, Mosek) are supposed to be a great deal better. Perhaps switching to Julia, with it’s richer ecosystem might be a good idea too. I don’t really like how the solution of the absolute value potential looks. Also, even at such a small grid size it still takes around a minute to solve. When you think about it, it is exploring a ridiculously massive space and still doing ok. There are hundreds of binary variables in this example. But there is a lot of room for tweaking and I think the approach is intriguing.


  • Can one do steepest descent style analysis for low energy statistical mechanics or quantum field theory?
  • Is the trace of the mixed integer program search tree useful for perturbative analysis? It seems intuitively reasonable that it visits low lying states
  • The Coulomb gas is a very obvious candidate for mixed integer programming. Let the charge variables on each grid point = integers. Then use the coulomb potential as a quadratic energy. The coulomb gas is dual to the XY model. Does this exhibit itself in the mixed integer formalism?
  • Coulomb Blockade?
  • Nothing special about the circle. It is not unreasonable to make piecewise linear approximations or other convex approximations of the sphere or of Lie groups (circle is U(1) ). This is already discussed in particular about SO(3) which is useful in robotic kinematics and other engineering topics.

Edit: /u/mofo69extreme writes:

By absolute value potential, I mean using |del phi| as compared to a more ordinary quadratic |del phi|2.

This is where I’m getting confused. As you say later, you are actually using two fields, phi_x and phi_y. So I’m guessing your potential is the “L1 norm”

|del phi| = |del phi_x| + |del phi_y|

? This is the only linear thing I can think of.

I don’t feel that the exact specifics of the XY model actually matter all the much.

You should be careful here though. A key point in the XY model is the O(2) symmetry of the potential: you can multiply the vector (phi_x,phi_y) by a 2D rotation matrix and the Hamiltonian is unchanged. You have explicitly broken this symmetry down to Z_4 if your potential is as I have written above. In this case, the results of the famous JKKN paper and this followup by Kadanoff suggest that you’ll actually get a phase transition of the so-called “Ashkin-Teller” universality class. These are actually closely related to the Kosterlitz-Thouless transitions of the XY model; the full set of Ashkin-Teller phase transitions actually continuously link the XY transition with that of two decoupled Ising models.

You should still get an interesting phase transition in any case! Just wanted to give some background, as the physics here is extremely rich. The critical exponents you see will be different from the XY model, and you will actually get an ordered Z_4 phase at low temperatures rather than the quasi-long range order seen in the low temperature phase of the XY model. (You should be in the positive h_4 region of the bottom phase diagram of Figure 1 of the linked JKKN paper.)”

These are some interesting points and references.

2D Robot Arm Inverse Kinematics using Mixed Integer Programming in Cvxpy

Mixed Integer programming is crazy powerful. You can with ingenuity encode many problems into it. The following is a simplification of the ideas appearing in http://groups.csail.mit.edu/robotics-center/public_papers/Dai19.pdf . They do 3d robot arms, I do 2d. I also stick to completely linear approximations.

The surface of a circle is not a convex shape. If you include the interior of a circle it is. You can build a good approximation to the circle as polygons. A polygon is the union of it’s sides, each of which is a line segment. Line sgements are convex set. Unions of convex sets are encodable using mixed integer programming. What I do is sample N regular positions on the surface of a circle. These are the vertices of my polygon. Then I build boolean indicator variables for which segment we are on. Only one of them is be nonzero \sum s_i == 1. If we are on a segment, we are allowed to make positions x that interpolate between the endpoints x_i of that segment x = \lambda_1 x_1 + \lambda_2 x_2, where \lambda_i >= 0 and \sum \lambda=1. These \lambda are only allowed to be nonzero if we are on the segment, so we suppress them with the indicator variables \lambda_i <= s_i + s_{i+1}. That’s the gist of it.

image link

Given a point on the circle (basically sines and cosines of an angle) we can build a 2d rotation matrix R from it. Then we can write down the equations connecting subsequent links on the arm. p_{i+1}=p_{i} +Rl. By using global rotations with respect to the world frame, these equations stay linear. That is a subtle point. p and R are variables, whereas l is a constant describing the geometry of the robot arm. If we instead used rotation matrices connecting frame i to i+1 these R matrices would compound nonlinearly.

All in all, pretty cool!

The Beauty of the Cone: How Convex Cones Simplify Convex Programming

I watched the Stephen Boyd course to get me started in convex programming. At the beginning, he spends some time talking about convex sets rather than launching in convex optimization. I did not appreciate this sufficiently on the first pass. Convex sets are a very geometric topic and I think that for the most part, convex functions are best thought as a special case of them. The epigraph of a scalar valued convex function on R^d , the filled in area above a graph, is a d+1 dimensional convex set. Convex constraints on the domain can be thought of as further cutting this shape. Finding the minimum of the shape can be thought of as a geometrical problem of finding the furthest point in the -y direction.

There is another mathematical topic that I did not appreciate for how powerful and clean it is. If you check out this textbook by Fenchel, he starts with the topic of convex cones rather than sets, I now realize for good reason.

I was sketching out a programmatic representation of convex sets and was annoyed at how ugly things were turning out. First off, infinity is a huge problem. Many convex problems have infinite answers.

The simplest problem is \max_x c^T x with no constraints. The answer plunges off to infinity vaguely in the direction of c. The next simplest problem is \max_x c^T x , a^T x \geq 0. This either goes off to infinity away from the constraint plane, hits the constraint plane and goes off to infinity, or if c and a are parallel, it is an arbitrary location on the constraint plane.

In short, the very most simple convex problems have infinite answers. You actually need to have a fairly complex problem with many conditions before you can guarantee a finite answer. Once we have a bounded LP, or a positive definite quadratic problem do we start to guarantee boundedness.

In order to work with these problems, it is helpful (necessary?) to compactify your space. There are a couple options here. One is to arbitrarily make a box cutoff. If we limit ourselves to an arbitrary box of length 1e30, then every answer that came back as infinite before is now finite, albeit huge. This makes me queasy though. It is ad hoc, actually kind of annoying to program all the corner cases, and very likely to have numerical issues. Another possibility is to extend your space with rays. Rays are thought of as points at infinity. Now any optimization problem that has an infinite answer returns the ray in the direction the thing goes of to infinity at. It is also annoying to make every function work with either rays or points though.

Another slightly less bothersome aesthetic problem is that the natural representation of half spaces is a normal ray and offset a^T x \geq b The principles of duality make one want to make this object as similar to our representation of points as possible, but it has 1-extra dimension and 1 arbitrary degree of freedom (scalar multiplying a and b by the same positive constant does not change the geometrical half space described). This is ugly.

In the field of projective geometry, there is a very beautiful thing that arises. In projective geometry, all scalar multiples of a ray are considered the same thing. This ray is considered a “point”. The reason this makes sense is that projective geometry is a model of perspective and cameras. Two points are completely equivalent from the perspective of a pinhole camera if they lie on the same ray connecting to the pinhole. This ray continues inside the camera and hits the photographic screen. Hence points on the 2D screen correspond to rays in 3D space. It makes elegant sense to consider the pinhole to be the origin or your space, and hence you come to the previous abstract definition. Points at infinity in 3D (like stars effectively) are not a problem since they lie on finitely describable rays. Points at infinite edge of the 2D screen are not really a problem either. Perfectly reasonable points in 3D can map to the infinite edge of the screen in principle. Someone standing perfectly to the side of the pinhole in 3d space has a ray that goes perfectly horizontally into the camera, and in a sense would only hit a hypothetical infinite screen at infinity.

A great many wonderful (and practical!) things fall out of the projective homogenous coordinates. They are ubiquitous in computer graphics, computer vision, and robotics. The mathematical language describing translations and rotations is unified. Both can be described using a single matrix. This is not the intention, but it is a pleasant surprise. Other geometrical questions become simple questions of linear or vector algebra. It is very cool.

Can we use this method for describing the space we want to find convex sets in? I think not. Unfortunately, the topology of projective space is goofy. At the very least in 2D projective space, which can be thought of as a sphere with opposite points identified, do not necessarily have an inside and outside (I’m questioning this idea now)? So convex sets and talking about maximal half planes and such seems questionable.

But I think we can fix it. Cones are good. In a slight twist on the projective geometry idea, what if you only non negative multiples of rays \lambda \geq 0 as the same “point”. You can take as a canonical plane x_0 =1 similar to the pinhole camera. This plane can be thought of as your more ordinary affine space. Now half spaces touching the origin (cones) correspond to affine half spaces. We have a reasonable way of describing points at infinity on this plane, which correspond to rays. Arbitrary convex sets on this plane correspond to cones of rays.

Cones in this context are sets closed under arbitrary non-negative sums of points within them. Hence a cone always includes the origin. Cones are basically convex sets of rays.

By adding in an arbtrary-ish degree of freedom to points, we bring points and half spaces much closer in alignment. Now evaluating whether a point in a half space looks like a^T x \geq 0 with no ugly extra b.

So in closing, as convex sets are kind of a cleaner version of convex functions, so are convex cones a cleaner version of convex sets. This is actually useful, since when you’re programming, you’ll have to deal with way less corner infinite cases. The theory is also more symmetrical and beautiful

Lens as a Divisibility Relation: Goofin’ Off With the Algebra of Types

Types have an algebra very analogous to the algebra of ordinary numbers (video). This is the basic table of correspondences. Code with all the extensions available here.

One way to see that this makes sense is by counting the cardinality of types built out of these combinators. Unit is the type with 1 inhabitant. Void has 0 inhabitants. If a has n and b has m possible values, then Either a b has n + m inhabitants, (a,b) has n*m and there are n^m possible tabulations of a->b. We’re gonna stick to just polynomials for the rest of this, ignoring a->b.

Another way of looking at this is if two finitely inhabited types have the same number of inhabitants, then the types can be put into an isomorphism with each other. In other words, types modulo isomorphisms can be thought as representing the natural numbers. Because of this, we can build a curious proof system for the natural numbers using ordinary type manipulation.

In addition, we also get a natural way of expressing and manipulating polynomials.Polymorphic types can be seen as being very similar to polynomial expressions with natural coefficients N[x]. The polymorphic type variables have the ability to be instantiated to any value, corresponding to evaluating the polynomial for some number.

The Lens ecosystem gives some interesting combinators for manipulating this algebra. The type Iso' a b contains isomorphisms. Since we’re only considering types up to isomorphism, this Iso' represents equality. We can give identity isomorphisms, compose isomorphisms and reverse isomorphisms.

We can already form a very simple proof.

Now we’ll add some more combinators, basically the axioms that the types mod isos are a commutative semiring. Semirings have an addition and multiplication operator that distribute over each other. It is interesting to note that I believe all of these Iso' actually are guaranteed to be isomorphisms ( to . from = id and from . to = id ) because of parametricity. from and to are unique ignoring any issues with bottoms because the polymorphic type signature is so constraining. This is not usually guaranteed to be true in Haskell just from saying it is an Iso'. If I give you an Iso' Bool Bool it might actually be the iso (const True) (const True) for example, which is not an isomorphism.

There are also combinators for lifting isomorphisms into bifunctors: firsting, seconding, and bimapping. These are important for indexing into subexpressions of our types in a point-free style.

Here is a slightly more complicated proof now available to us.

We can attempt a more interesting and difficult proof. I developed this iteratively using . _ hole expressions so that GHC would tell me what I had manipulated my type to at that point in my proof.

Artwork Courtesy of David. Sorry for any motion sickness.

The proof here is actually pretty trivial and can be completely automated away. We’ll get to that later.

If Iso' is equality, what about the other members of the Lens family? Justin Le says that Lens&nbsp;s&nbsp;a are witness to the isomorphism of a type s to the tuple of something and a. Prism witness a similar thing for sums. Once we are only considering types mod isos, if you think about it, these are expressions of two familiar relations on the natural numbers: the inequality relation and the divisibility relation

Mathematically, these relations can be composed with equalities, just like in the lens hierarchy Lens and Prism can be composed with Iso. Both form a category, since they both have id and (.).

Here are a couple identities that we can’t derive from these basic combinators. There are probably others. Woah-ho, my bad. These are totally derivable using id_mul, id_plus, mul_zero, _1, _2, _Left, _Right.

Pretty neat! Random thoughts and questions before we get into the slog of automation:

  • Traversal is the “is polynomial in” relation, which seems a rather weak statement on it’s own.
  • Implementing automatic polynomial division is totally possible and interesting
  • What is the deal with infinite types like [a]? Fix. I suppose this is a theory of formal power series / combinatorial species. Fun combinatorics, generatingfunctionology. Brent Yorgey did his dissertation on this stuff. Wow. I’ve never really read this. It is way more relevant than I realized.
  • Multivariate polynomial algorithms would also be interesting to explore (Grobner basis, multivariate division)
  • Derivatives of types and zippers – Conor McBride
  • Negative Numbers and Fractions?
  • Lifting to rank-1 types. Define Negative and Fractions via Galois connection?

Edit: /u/carette (wonder who that is 😉 ) writes:

“You should dig into
J Carette, A Sabry Computing with semirings and weak rig groupoids, in Proceedings of ESOP 2016, p. 123-148. Agda code in https://github.com/JacquesCarette/pi-dual/tree/master/Univalence. A lot of the algebra you develop is there too.

If you hunt around in my repos, you’ll also find things about lenses, exploring some of the same things you mention here.”

Similar ideas taken further and with more sophistication. Very interesting. Check it out.


Our factor example above was quite painful, yet the theorem was exceedingly obvious by expansion of the left and right sides. Can we automate that? Yes we can!

Here’s the battle plan:

  • Distribute out all expressions like a*(b+c) so that all multiplication nodes appear at the bottom of the tree.
  • Reduce the expression by absorbing all stupid a*1, a*0, a+0 terms.
  • Reassociate everything to the right, giving a list like format
  • Sort the multiplicative terms by power of the variable

Once we have these operations, we’ll combine them into a canonical operation. From there, most equality proofs can be performed using the rewrite operation, which merely puts both sides into canonical form

Once we have those, the painful theorem above and harder ones becomes trivial.

Now we’ll build the Typeclasses necessary to achieve each of these aims in order. The Typeclass system is perfect for what we want to do, as it builds terms by inspecting types. It isn’t perfect in the sense that typeclass pattern matching needs to be tricked into doing what we need. I have traded in cleverness and elegance with verbosity.

In order to make our lives easier, we’ll need to tag every variable name with a newtype wrapper. Otherwise we won’t know when we’ve hit a leaf node that is a variable. I’ve used this trick before here in an early version of my faking Compiling to Categories series. These wrappers are easily automatically stripped.

A common pattern I exploit is to use a type family to drive complicated recursion. Closed type families allow more overlap and default patterns which is very useful for programming. However, type families do not carry values, so we need to flip flop between the typeclass and type family system to achieve our ends.

Here is the implementation of the distributor Dist. We make RDist and LDist typeclasses that make a sweep of the entire tree, using ldist and rdist as makes sense. It was convenient to separate these into two classes for my mental sanity. I am not convinced even now that I have every case. Then the master control class Dist runs these classes until any node that has a (*) in it has no nodes with (+) underneath, as checked by the HasPlus type family.

Next is the Absorb type class. It is arranged somewhat similarly to the above. Greedily absorb, and keep doing it until no absorptions are left. I think that works.

The Associators are a little simpler. You basically just look for the wrong association pattern and call plus_assoc or mul_assoc until they don’t occur anymore, then recurse. We can be assured we’re always making progress if we either switch some association structure or recurse into subparts.

Finally, the SortTerm routine. SortTerm is a bubble sort. The typeclass Bubble does a single sweep of swapping down the type level list-like structure we’ve built. The SortTerm uses the Sorted type family to check if it is finished. If it isn’t, it call Bubble again.

Hope you thought this was neat!

Giving the Mostly Printed CNC a try (MPCNC)

Declan had the good idea to make a CNC machine. There is a popular plan available here


A Doge

The really cute part of it is using electrical conduit as rails, which are shockingly inexpensive. Like a couple bucks for 4 feet! Holy shnikes!

We’ve been printing up a storm for the last couple weeks. A ton of parts!

We already had a lot of motors and stuff lying around. Declan bought a lot of stuff too just for this. Assorted bearings and bolts. The plans have a bill of materials.

Repetier host seemed to work pretty well for controlling the board

Used the RAMPS branch of the mpcnc marlin repo

Edited the header files as described in this post so that we could use both extruders as extra x and y motor drivers. It did not seem like driving two motors from the same driver board was acceptable. Our bearings are gripping the rails a little too tight. It is tough to move.

Some useful links on the thingiverse version of the mpccnc https://www.thingiverse.com/thing:724999

He suggests using this program http://www.estlcam.com/ Seem like windows only? ugh.

The mpcnc plans don’t contain actual tool mounts but here are some examples

A pen holder: https://www.thingiverse.com/thing:1612207/comments

A dewalt mount: https://www.thingiverse.com/thing:944952

This is an interesting web based g-code maker. Ultimately a little to janky though. It works good enough to get started http://jscut.org/jscut.html . Not entirely clear what pocket vs interior vs whatever is. engrave sort of seemed like what I wanted. Went into inkscape with a reasonable png and traced bitmapped it, then object to path. It’s also nice to just find an svg on the internet

The following code was needed to zero repetier and the RAMPS at the touch off point. We added it as a macro. It is doing some confusing behavior though.

pycam is the best I can find for 3d machining. Haven’t actually tried it yet


We should probably upgrade the thing to have limit switches. It pains me every time we slam it into the edge.

All in all, a very satisfying project. Hope we build something cool with it.

A horsie

Chile: Nice place

Just got back from Chile from a vacation visiting Will. Nice place.

We took a leisurely amount of time getting to Torres del Paine, which was the main feature of our trip. We travelled through Santiago, Punta Arenas and Puerto Natales. We spent a very tired day in the children’s science museum and rode the funicular. There wasn’t that much to do in the latter two cities, maybe we could have shaved some time from them. Our hostel in Punta Arenas was notably ramshackle. We spent 5 days backpacking in the park. Absolutely gorgeous. The wind on the second day was like nothing I’ve ever experienced. I was a little concerned about staying on my feet. Hiking poles for the win. Day 4 was cold and wet and miserable, but it ended up ok in the end. We were able to get a spot in a refugio when it just was too overwhelming to try to set up our tents in a flooded muddy campsite on that day. I think Beth in particular was at the end of her rope. I basically didn’t poop the entire first week I was there, but one glorious day on the mountain the heavens parted for me, and I was fine from then on. I didn’t quite pack food right. There ended up being camp stores at most of the places we stayed, but if I hadn’t been able to re up on cookies it would have been a lean couple days food wise. Ramen Bombs for the win. We drank right from the streams, which is unusual for us. Usually we filter.

All told we did ok on food. I really like the al pobre thing. What isn’t to like a about steak, onions, and eggs on fries? Chileans seem a little eager on the mayo. Nobody does breakfast right except the US. The street food was good. I love the fried tortilla thing that you can just slather salsa on. It was like 30 cents. The empanadas were also pretty great cheap food. Ceviche was also very tasty. They toss out avocado like it’s nuthin down there. Sandwiches were kind of shitty. Don’t know if that is entirely fair, but that is how it felt. Highlight meal of the trip was at Cafe Artimana in Puerto Natales. Yeah, I got some al pobre. But also basil lemonade stuff

After the hiking, we scheduled an early return to Santiago rather than busting our asses to a glacier viewpoint. In the airport at Punta Arenas, we got the southernmost dominos in the entire world. Ben Will and Declan went on a taxi quest to go get it. Wandered around Santiago, saw some churches and cathedrals, a fort, ate churros, etc. Declan was on a quest for a neck pillow. We did a prison themed Escape Room. People felt like we got a little cheated because some of the puzzles felt like bullshit? I think they really expect to break room records. I suck at escape rooms. We were able to spend a day in Valparaiso, which had a super awesome street art scene.

I spent the last day puking my guts out. So it goes. Not sure how exactly. The street sausage may have put me over the top. I guess I’m a sensitive fellow? I get pretty consistently unwell on trips.

Chile has tons of fluffy street dogs. They’re pretty friendly, although they do chase cars and motorcycles. Idiots.

Chile has a way lower english quotient than other trips I made. I’ve been surprised how common at least some english has been in Europe and Asia, and was now equally surprised how little there was in Chile. It makes sense. A lot of the continent is spanish speaking. It was really useful to have Will around, who has gotten shockingly good at Spanish from an outsiders perspective.


Declan’s post on the trip.

tough day

Wait, where are all my BOBBY PICS!?!

o there u r u cutie


A strange place named Andre’s

Proving Addition is Commutative in Haskell using Singletons

Yesterday morning, I was struck with awe at how amazingly cool the dependently typed approach (Agda, Idris, Coq) to proving programs is. It is great that I can still feel that after tinkering around with it for a couple years. It could feel old hat.

In celebration of that emotion, I decided to write a little introductory blog post about how to do some proving like that in Haskell. Haskell can replicate this ability to prove with varying amounts of pain. For the record, there isn’t anything novel in what follows.

One methodology for replicating the feel of dependent types is to use the singletons pattern. The singleton pattern is a way of building a data type so that there is an exact copy of the value of a variable in its type.

For future reference, I have on the following extensions, some of which I’ll mention when they come up.

Here’s how the pattern goes.

Step 1: define your ordinary data type. Bool is already defined in the Prelude, but here is what it looks like

Step 2: turn on the DataKinds extension. This automatically promotes any data type constructor like True or False or Just into types that have apostrophes in front of them 'True, 'False, 'Just. This is mostly a convenience. You could have manually defined something similar like so

Step 3: Define your singleton datatype. The singleton datatype is a GADT (generalized abstract data type). GADT declarations take on a new syntax. It helps to realize that ordinary type constructors like Just are just functions. You can use them anywhere you can use functions. Just has the type a -&gt; Maybe a. It might help to show that you can define a lower case synonym.

just is clearly just a regular function. What makes constructors a special thing (not quite “just functions”) is that you can also pattern match on them. Data constructors are functions that “do nothing”. They hold the data until eventually you get it back again via pattern matching.

So why don’t you write the type signature of the constructors when you define them? Why does using a data statement look so different than a function definition? The GADT syntax brings the two concepts visually closer.

Letting you define the type signature for the constructor let’s you define a constrained type signature, rather than the inferred most general one. It’s similar to the following situation. If you define an identity function id, it has the polymorphic type a -&gt; a. However, you can explicitly constrain the function with an identical implementation. If you try to use boolid on an Int it is a type error.

The GADT syntax let’s you constrain what the type signature of the constructor is, but also very interestingly, let’s the type checker infer information when you pattern match into the GADT.

With all that spiel, here is the singleton type for Bool as a GADT.

You have made an exact copy of the value at the type level. When you pattern match into a variable x of type SBool s in the STrue branch, it knows that s ~ 'True and in the SFalse branch it knows that s ~ 'False.

Here’s the analogous construction for a Peano natural number

Now let’s talk about programming.

Addition is straightforward to define for our Nat.

Let’s replicate this definition at the type level. The extension we’ll want is TypeFamilies. Type families enables a syntax and feature for defining functions on types very similarly to how you define regular functions.

Now finally, we can exactly mirror this definition on singletons

In the type signature SNat is kind of like a weirdo forall. It is a binding form that generates a new type variable you need to express the typelevel connections you want. The type variable n is a typelevel thing that represents the value.

Now let’s talk about proving. Basically, if you’re intent is proving things, I think it is simplest if you forget that the original data type ever existed. It is just a vestigial appendix that makes the DataKinds you need. Only work with singletons. You will then need to make a safe layer translating into and out of the singletons if you want to interface with non-singleton code.

We’re going to want to prove something about equality. The standard definition of equality is

I put the 1 there just so I wouldn’t clash with the Eq typeclass. It’s ugly, sorry. You can find an identical definition in base http://hackage.haskell.org/package/base- that uses the extension TypeOperators for a much cleaner syntax.

Why is this a reasonable equality? You can construct using Refl only when you are just showing that a equals itself. When you pattern match on Refl, the type checker is learning that a ~ b. It’s confusing. Let’s just try using it.

We can prove a couple facts about equality. First off that it is a symmetric relation. If a = b then b = a.

When we pattern match and expose the incoming Refl, the type checker learns that a ~ b in this branch of the pattern match. Now we need to return an Eq1 b a. But we know that a ~ b so this is the same as an Eq1 a a. Well, we can easily do that with a Refl.

Similarly we can prove the transitivity of equality.

Pattern matching on the first equality tells the type checker that a ~ b, the second that b ~ c. Now we need to return a Eq1 a c but this is the same as Eq1 a a because of the ~ we have, so Refl suffices.

It’s all damn clever. I wouldn’t have come up with it.

Now let’s start proving things about our addition operator. Can we prove that

This one is straightforward since obviously 'Zero is 'Zero. How about something slightly more complicated 1 + 0 = 1.

The typechecker can evaluate addition on concrete numbers to confirm this all works out.

Here’s a much more interesting property \forall x. 0 + x = x

This one is also straightforward to prove. Looking at the definition of NPlus knowing that the first argument is 'Zero is enough to evaluate forward.

Here’s our first toughy. \forall x. x + 0 = x This may seem silly, but our definition of NPlus did not treat the two arguments symmetrically. it only pattern match on the first. Until we know more about x, we can’t continue. So how do we learn more? By pattern matching and looking at the possible cases of x.

The first case is very concrete and easy to prove. The second case is more subtle. We learn that x ~ 'Succ x1 for some x1 when we exposed the SSucc constructor. Hence we now need to prove Eq1 (NPlus ('Succ x1) 'Zero) ('Succ x1). The system now has enough information to evaluate NPlus a bit, so actually we need Eq1 ('Succ (NPlus x1 'Zero)) ('Succ x1). The term (NPlus x1 'Zero) looks very similar to what we were trying to prove in the first case. We can use a recursive call to get an equality proof that we pattern match to a Refl to learn that(NPlus x1 'Zero) ~ x1 which will then make the required result Eq1 ('Succ x1) ('Succ x1) which is obviously true via Refl. I learned a neat-o syntax for this second pattern match, called pattern guards. Another way of writing the same thing is

Follow all that? Haskell is not as friendly a place to do this as Idris or Agda is.

Now finally, the piece de resistance, the commutativity of addition, which works in a similar but more complicated way.

A question: to what degree does this prove that nplus or snplus are commutative? The linkage is not perfect. snplus is type constrained to return the same result as NPlus which feels ok. nplus is syntactically identical to the implementation of the other two, but that is the only link, there is nothing compiler enforced.

The existence of non-termination in Haskell also makes everything done here much less fool-proof. It wouldn’t be all that hard to accidentally make a recursive call in one of our proofs that is non terminating and the compiler would accept it and say nothing.

I recommend you check out the links below for more.

Source available here https://github.com/philzook58/singleberg






Casadi – Pretty Damn Slick

Casadi is something I’ve been aware of and not really explored much. It is a C++ / python / matlab library for modelling optimization problems for optimal control with bindings to IPOpt and other solvers. It can produce C code and has differentiation stuff. See below for some examples after I ramble.

I’ve enjoyed cvxpy, but cvxpy is designed specifically for convex problems, of which many control problems are not.

Casadi gives you a nonlinear modelling language and easy access to IPOpt, an interior point solver that works pretty good (along with some other solvers, many of which are proprietary however).

While the documentation visually looks very slick I actually found it rather confusing in contents at first. I’m not sure why. Something is off.

You should download the “example pack” folder. Why they don’t have these in html on the webpage is insane to me. https://github.com/casadi/casadi/releases/download/3.4.4/casadi-example_pack-v3.4.4.zip

It also has a bunch of helper classes for DAE building and other things. They honestly really put me off. The documentation is confusing enough that I am not convinced they give you much.

The integrator classes give you access to external smart ode solvers from the Sundials suite. They give you good methods for difficult odes and dae (differential algebraic equations, which are ODEs with weird constraints like x^1 + y^1 == 1) Not clear to me if you can plug those in to an optimization, other than by a shooting method.

Casadi can also output C which is pretty cool.

I kind of wondered about Casadi vs Sympy. Sympy has lot’s of general purpose symbolic abilities. Symbolic solving, polynomial smarts, even some differential equation understanding. There might be big dividends to using it. But it is a little harder to get going. I feel like there is an empty space for a mathemtical modelling language that uses sympy as it’s underlying representation. I guess monkey patching sympy expressions into casadi expression might not be so hard. Sympy can also output fast C code. Sympy doesn’t really have any support for sparseness that I know of.

As a side note, It can be useful to put these other languages into numpy if you need extended reshaping abilities. The other languages often stop at matrices, which is odd to me.

Hmm. Casadi actually does have access to mixed integer programs via bonmin (and commercial solvers). That’s interesting. Check out lotka volterra minlp example


The optim interface makes some of this look better. optim.minimize and subject_to. Yeah, this is more similar to the interfaces I’m used to. It avoids the manual unpacking of the solution and the funky feel of making everything into implicit == 0 expressions.


Here is a simple harmonic oscillator example using the more raw casadi interface. x is positive, v is velocity, u is a control force. I’m using a very basic leap frog integration. You tend to have to stack things into a single vector with vertcat when building the final problem.

Let’s use the opti interface, which is pretty slick. Here is a basic cartpole https://web.casadi.org/blog/opti/

Very fast. Very impressive. Relatively readable code. I busted this out in like 15 minutes. IPopt solves the thing in the blink of an eye (about 0.05s self reported). Might be even faster if I warm start it with a good solution, as I would in online control (which may be feasible at this speed). Can add the initial condition as a parameter to the problem

I should try this on an openai gym.

Haskell has bindings to casadi.